Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals

Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals are part of Plus Two Maths Chapter Wise Previous Year Questions and Answers. Here we have given Plus Two Maths Chapter Wise Previous Chapter 7 Integrals.

Kerala Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals

Plus Two Maths Application of Derivatives 3 Marks Important Questions

Question 1.
Find the following integrals. (May -2011)
 (i) x2e2xdx (ii) exsinxdx
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 1

Question 2.
(i) exsecx(1+tanx)dx=
(a) ex cosx + c (b) ex sec x + c
(C) ex tanx + c (d) ex sin x + c
(ii) Find sin2xcos3xdx (March – 2014)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 2

Question 3.
Find the following integrals.
(i)  (i) 1(x+1)(x+2)dx (ii) 2x1(x1)(x+2)2dx (March – 2014)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 3

Plus Two Maths Application of Derivatives 4 Marks Important Questions

Question 1.
Consider the integral I=π0xsinx1+cos2xdx
(i) Express I=π2π0sinx1+cos2xdx
(ii) Show that I=π24 (March – 2012)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 4

Question 2.
(i) Evaluate: 32xx2+1dx
(ii) Evaluate: π0x1+sinxdx (March – 2014)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 5
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 6

Question 3.
(a) What is the value of 10x(1x)9dx If the
 (i) 110 (ii) 111 (iii) 190 (iv) 1110
(b) Find 10(2x+3)dx of a sum. (March – 2015)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 7

Question 4.
Evaluate x0log(1+cosx)dx
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 8

Question 5.
Find 50(x+1)dx as limit of a sum. 
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 42

Question 6.
Evaluate 40x2dx as the limit of a sum. (March – 2017)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 10

Plus Two Maths Application of Derivatives 6 Marks Important Questions

Question 1.
(i) Fill in the blanks; 1xdx=_____
(ii) Evaluate 5x+1x22x35dx
(iii) Integrate with respect to x. x2+4x+8 (March – 2010)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 11
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 12

Question 2.
(i) Evaluate cosec2xcot2x+9dx
(ii) Evaluate (cos1x)2dx (May -2010)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 13

Question 3.
(i) Evaluate π0xsinx1+cos2xdx
(ii) Evaluate 20exdx as limit of a sum.  (May -2010)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 14
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 15

Question 4.
(i) Fill in the blanks cotxdx=_____
(ii) Evaluate the integrals
 (a) sin2xcos4xdx (b) x(x+1)(x+2)dx (March -2011)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 16

Question 5.
(i) Evaluate 10xdx as the limit of a sum.
(ii) Evaluate 10x(1x)ndx (March – 2011)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 17

Question 6.
(i) Evaluate 211x(1+logx)2dx
(ii) Evaluate 30(2x2+3)dx as the limit of a sum. (May – 2011)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 18
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 19

Question 7.
(i) What is 19+x2dx=?
(ii) Evaluate the integrals 11+x+x2+x3dx (May – 2012)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 20
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 21

Question 8.
(i) Evaluate 30f(x)dx
where f(x)={x+3,0x23x,2x3

(ii) Prove that 10log(x1x)dx=10log(1xx)dx Find the value of 10log(x1x)dx (May – 2012)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 22

Question 9.
(i) Find cotxdx=
(ii) Find xlogxdx
(iii) Find x1(x2)(x3)dx (March – 2013)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 23

Question 10.
Evaluate
 (i) x+354xx2dx
 (ii) π/3π/6dx1+tanx (May – 2013)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 24
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 25
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 26

Question 11.
Evaluate
 (i) x2tan1xdx (ii) 21x3xdx (May – 2013)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 27
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 28
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 29

Question 12.
Evaluate π/40log(1+tanx)dx (March – 2013)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 30

Question 13.
(a) The value of π2π2cosxdx (May – 2014)
(b) Prove that π0xa2cos2x+b2sin2xdx=π22ab
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 31
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 32

Question 14.
(a) 1x2+a2dx=
(b) Find 19x2+6x+5dx
(c) Find x(x1)2(x+2)dx (May – 2014)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 33
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 34

Question 15.
Integrate the following
 (a) x1x+1 (b) sinxsin(xa) (c) 132xx2 (March – 2015)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 35

Question 16.
(a) Prove that cos2xdx=x2+sin2x4+c
(b)Find 12xx2dx
(c) Find xcosxdx (May – 2015)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 36

Question 17.
Find the following:
 (i) 1x(x7+1)dx (ii) 41|x2|dx
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 37
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 38

Question 18.
Find π20logsinxdx
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 39
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 40

Question 19.
Find the following:  (i) cotxlog(sinx)dx (ii) 1x2+2x+2dx (iii) xe9xdx (May – 2017)
Answer:
Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals 41

We hope the Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals help you. If you have any query regarding Kerala Plus Two Maths Chapter Wise Previous Questions Chapter 7 Integrals, drop a comment below and we will get back to you at the earliest.