Processing math: 100%

Equations Reducible To A Pair Of Linear Equations

Equations Reducible To A Pair Of Linear Equations Examples

Example 1:    Solve the following system of equations
12x1y = – 1; 1x + 12y = 8
Sol.    We have,
12x1y = – 1          ….(1)
1x + 12y = 8           ….(2)
Let us consider 1/x = u and 1/y = v.
Putting 1/x = u and 1/y = v in the above equations, we get;
u2 – v = – 1           ….(3)
u + v2 = 8 ….(4)
Let us eliminate v from the system of equations. So, multiplying equation (3) with 1/2 and (4) with 1, we get
u4v2  = 12 ….(5)
u + v2  = 8 ….(6)
Adding equation (5) and (6), we get ;
u4  + u = 12  + 8
5u4152
⇒ u = 152 × 45
⇒ u = 6
We know,
1x = u ⇒ 1x  = 6
⇒ x = 16
Putting 1/x = 6 in equation (2), we get ;
6 + 12y  = 8  ⇒  12y = 2
1y  = 4     ⇒  y = 14
Hence, the solution of the system is,
x = 16  , y = 14

Example 2:   Solve  2x + 13y = 15;            3x + 23y = 2   and also find ‘a’ for which y = ax – 2.
Sol.    Considering 1/x = u and 1/y = v, the given system of equations becomes
2u + v315
⇒  6u+v315
30u + 5v = 3           ….(1)
3u + 2v3 = 2     ⇒   9u + 2v = 6    ….(2)
Multiplying equation (1) with 2 and equation (2) with 5, we get
60u + 10v = 6 ….(3)
45u + 10v = 30 ….(4)
Subtracting equation (4) from equation (3), we get
15u = – 24
u = 2415 = 85
Putting u = 85 in equation (2), we get;
9 × 85 + 2v = 6
725 + 2v = 6
⇒ 2v = 6 + 7251025
⇒ v = 515
Here 1x  = u = 85
⇒ x = 58
And, 1y  = v = 515  ⇒ y = ⇒ 551
Putting x = 58 and y = 551 in y = ax – 2, we get;
551 = 5a8 – 2
5a8 = – 2 – 551 = 102551 = 10751
a = 10751 × 85 = 856255
a = 856255

Example 3:   Solve  2x+2y+62xy=4 ; 52(x+2y)+13(2xy)=1   where, x + 2y ≠ 0 and 2x – y ≠ 0
Sol.    Taking  1x+2y = u and 12xy = v, the above system of equations becomes
2u + 6v = 4         ….(1)
5u2 + v3 = 1         ….(2)
Multiplying equation (2) by 18, we have;
45u + 6v = 18 ….(3)
Now, subtracting equation (3) from equation (1), we get ;
–43u = – 14   ⇒   u = 1443
Putting u = 14/43 in equation (1), we get
2 × 1443 + 6v = 4
⇒  6v = 4 – 2843 = 1722843  ⇒   v = 14443
Now, u = 1443 = 1x+2y
⇒ 14x + 28y = 43      ….(4)
And, v = 14443 = 12xy
⇒ 288x – 144y = 43     ….(5)
Multiplying equation (4) by 288 and (5) by 14, the system of equations becomes
288 × 14x + 28y × 288 = 43 × 288
288x × 14 – 144y × 14 = 43 × 4
⇒ 4022x + 8064y = 12384       ….(6)
4022x – 2016y = 602      ….(7)
Subtracting equation (7) from (6), we get
10080y = 11782   ⇒   y = 1.6(approx)
Now, putting 1.6 in (4), we get,
14x + 28 × 1.6 = 63
⇒ 14x + 44.8 = 63   ⇒ 14x = 18.2
⇒  x = 1.3 (approx)
Thus, solution of the given system of equation is x = 1.3 (approx), y = 1.6 (approx).

Example 4:   Solve 1x+y+2xy=2 and 2x+y1xy=3    where, x + y ≠ 0 and x – y ≠ 0
Taking   1x+y = u and   1xy = v the above system of equations becomes
u + 2v = 2                                 ….(1)
2u – v = 3                                 ….(2)
Multiplying equation (1) by 2, and (2) by 1, we get;
2u + 4v = 4                               ….(3)
2u – v = 3                                 ….(4)
Subtracting equation (4) from (3), we get

5v = 1 ⇒   v = 15
Putting v = 1/5 in equation (1), we get;
u + 2 × 15 = 2  ⇒ u = 2 – 25 = 85
Here, u = 85 = 1x+y  ⇒  8x + 8y = 5        ….(5)
And, v = 15 = 1xy  ⇒  x – y = 5         ….(6)
Multiplying equation (5) with 1, and (6) with 8, we get;
8x + 8y = 5        ….(7)
8x – 8y = 40       ….(8)
Adding equation (7) and (8), we get;
16x = 45     ⇒  x =  4516
Now, putting the above value of x in equation (6), we get;
4516 – y = 5   ⇒  y = 4516 – 5 = 3516
Hence, solution of the system of the given equations is ;
x = 4516 , y =  3516