How To Construct A Tangent To A Circle At A Given Point
Steps of Construction
Step I: Take a point O on the plane of the paper and draw a circle of given radius.
Step II: Take a point P on the circle.
Step III: Join OP.
Step IV: Construct ∠OPT = 90º.
Step V: Produce TP to T’ to get TPT’ as the required tangent.
Read More:
- How To Construct A Tangent To A Circle From An External Point
- Number Of Tangents From A Point On A Circle
Construction Of Tangent To A Circle At A Given Point With Examples
Example 1: Take a point O on the plane of the paper. With O as centre draw a circle of radius 3cm. Take a point P on this circle and draw a tangent at P.
Sol. Steps of Construction
Step I: Take a point O on the plane of the paper and draw a circle of radius 3 cm.
Step II: Take a point P on the circle and join OP.
Step III: Construct ∠OPT = 90º
Step IV: Produce TP to T’ to obtain the required tangent TPT’.
Example 2: Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q draw tangent to the circle.
Sol. Steps of Construction
Step I : Taking O as centre and radius equal to 4 cm draw a circle.
Step II : Draw diameter POQ.
Step III : Construct ∠PQT = 90º
Step IV : Produce TQ to T’ to obtain the required tangent TQT’.